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Abstract
Wind power project development investment is based on the separate technical and financial analyses. Based on the actual
wind data, data-based wind distribution map and wake effect model, a combined techno-economic analysis is proposed in this
paper. Starting from deriving the wind distribution map, a comprehensive analysis extending to the feasibility assessment of
the project is presented here. The problem is formulated as the maximization of net present value of the project subject to the
specified initial investment cost within a fixed area and turbine spacing constraints. Simultaneous optimization of the wind
turbine size, hub height and placement is realized with BPSO-TVAC. Sensitivity analysis and Monte Carlo simulation are
used to investigate the feasibility of the project, against various parameters, imposed on by the techno-economic constraints.
Hypothesis testing with a confidence level of 99.99% corroborates the results obtained from Monte Carlo simulation. With
scenario analysis, a positive NPV is identified even in the worst-case scenario, an attractive trait for investors. An ideal
decision-making tool considering technical efficiency and profitability simultaneously is presented.

Keywords Wind turbines placement · Wake effect model · Particle swarm optimization · Technical and financial analyses ·
Monte Carlo Simulation · Hypothesis Testing

1 Introduction

Wind turbines generating electrical energy from wind are
grouped/operated together as awind farm in order to increase
the power production with merits including lower costs of
installation, operation and maintenance. As a conventional
wind farm layout, wind turbines are placed in rows that are
8–12 rotor diameters apart in the windward direction and in
columns of 3–5 rotor diameters apart in the crosswind direc-
tion as the rule of thumb [1]. However, the different wind
characteristic at specific areas may increase the wind farm
array loss due to the wake effect reducing wind speed at a
downstream turbine. An optimal wind farm layout, designed
with a particular wind data, could reduce thewake effects and
maximize both the total wind energy extraction and financial
benefits to wind farm developers compared to the conven-
tional wind farm layout [2].
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Many layout optimization algorithms are available that
can help to achieve the most efficient wind farm configura-
tion that optimizes the placement of wind turbines, within
a specific area, yielding higher power outputs with a denser
and staggered layout. The optimal wind turbine placement is
formulated as a combinatorial problem, using both analyti-
cal and heuristic optimization techniques, which determine
the near-optimal wind turbine positioning in a wind farm.
The location corresponding to the maximum energy pro-
duction at the minimum cost is determined using the said
formulation. Most studies apply heuristic search-based opti-
mization algorithms including the genetic algorithm (GA)
[3–7], evolutionary algorithm (EA) [6] and binary particle
swarm optimization with time-varying acceleration coeffi-
cients (BPSO-TVAC) [8], but with the simplified wind data
and turbine cost model.

Nonlinear mathematical programming approach utilizing
the exact gradient information is developed to solve the
continuous-variable wind farm layout optimization problem
handling land-use constraints in [9]. Sequential convex pro-
gramming (SCP) is employed to maximize the wind farm
power production with a fixed large number of wind tur-
bines in [10]. Both the heuristic methods in [3–8], as well
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as the mathematical programming method in [9,10], have
used only the simplified models for linear wake model, cost
and wind distribution models. Layout optimization to reduce
levelized cost of electricity generated from offshore wind
farms is presented in [11]. Effect of different hub heights and
uncertainty of wind is studied using linearization in [12,13].
Optimal layout for offshore wind farm considering wake
effect and electrical losses is considered in [14]. The techni-
cal and financial analyses incorporating the actual wind data,
investment cost on wind farm and uncertainty factors have
not been considered in the previous literature.

To evaluate the feasibility of a wind farm planning project,
both annual energy production and financial benefit should
be considered. The historical wind data at specific sites are
mostly used to represent the potential of energy production
in the preliminary site investigation [15,16]. The variations
in the speed and direction of wind are collected over a
period of time and are transformed into the Weibull distri-
bution function. A wind turbine power curve and the wind
energy at a particular site can be evaluated using both the
analytical and the numerical methods. In the wind farm eval-
uation, the array losses due to the wake effect need to be
accounted for a wind farm considering the frequency asso-
ciated with the range of speed and directional distribution of
wind. Therefore, the variation of potential energy production
from the observed wind speed at a specific site is estimated
in [17–19]. Besides the wind farm energy production, an
economic benefit evaluation is also considered as the wind
farm design objective, which included cost of investment
and cost of energy. In [2], an improved wake model based
on the measured data [20] and the wind farm cost model
using the combination cost model with the learning curve
[21] is discussed. Using the actual wind speed and direc-
tional data, the wind distribution function is created and is
then studied alongside the financial objective function. Max-
imizing the net present value (NPV), subject to both technical
and economic constraints, which will directly maximize the
shareholders’ wealth, should be the evaluation criteria in the
development of a wind farm.

For economic evaluation, wind farm project developer
and many researchers usually follow the National Renew-
able Energy Laboratory (NREL) guideline manual [22]. The
method provides the comparative analysis with the gen-
eral economic indices including NPV, internal rate of return
(IRR), profitability index (PI) or benefit-to-cost ratios, pay-
back period (PB) and the cost of energy (COE). Generally,
NPV is considered as the explicit and robust project evalua-
tion method, derived from the discounted cash flows (DCF).
In [23], EA is used tomaximize theNPV, optimizing thewind
farm configuration by using the simple cost model by fixing
turbine cost ratio within a wind farm and simple wind dis-
tribution with the specific initial investment cost constraint.
Moreover, the small number of the same wind turbine siz-

ing is used within the specific area of the wind farm. For the
investment considerations, various technical inputs including
the actual wind data, wind farm cost model and the different
wind turbine sizing parameters are not used in the optimiza-
tion. In addition to these, the financial inputs including the
uncertainty of incomes, expense, and discount rates should
be considered for accurate results.

Both technical and financial uncertainties impose invest-
ment risk on the NPV of a wind farm project. Sensitivity
analysis andMonte Carlo simulation are used to consider the
project risk to assure the investment returns both on energy
production [24] and on financial evaluation [25,26]. Sce-
nario analysis is developed to estimate the expected NPV
to the specific variations in the key factors during an unfa-
vorable event or to examine a theoretical worst-case scenario.
Alternatively, the Monte Carlo simulations can provide the
distributed project NPV as an outcome by repeating the
calculation with the normally distributed input random vari-
ables. In [27], the variation in input parameter distribution
including mean wind speed, Weibull shape factor, direction
frequencies and power curve determined the AEP and NPV
normal distributions for an existing wind farm. However, the
study has not been applied to the development of awind farm,
especially considering the fact that the variation of NPV can
be a useful tool for wind farm developers to make investment
decision.

Generally, commercially available software is used to esti-
mate the potential of energy production and to calculate the
NPV using a given wind farm layout, which is also based on
the experience of wind farm designer. The software does not
optimize wind turbine placement and hence may not pro-
vide the highest possible NPV. In a previous study [2], on
maximizing the annual operating income from a wind farm,
making use of actual wind data and thewind farm costmodel,
a higher annual operating income is obtained compared to
the conventional layout. However, the maximization of the
annual operating incomemay not be similar to the maximum
net present value for the entire wind farm project.

To summarize, the simultaneous techno-economic anal-
ysis incorporating the actual wind data, investment cost
on wind farm and uncertainty factors is not considered
previously. Maximizing NPV, subject to techno-economic
constraints, is to be considered for maximization of stake-
holder wealth in the development of a wind farm. For
the investment considerations, the actual wind speed data,
wind farm cost model and multiple wind turbine sizes
and sizing parameters are not used. In terms of finan-
cial inputs, the uncertainty of incomes, expense and dis-
count rates should be considered for accurate results. All
the above-mentioned shortcomings are remedied in this
paper.

In this research, using the wind turbine power curve along
with the linear wake effect model, the power extraction and
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annual energy from wind farm are determined. The initial
wind farm investment cost is derived based on the wind tur-
bine component cost model with a learning curve concept.
The revenue and cashflow for awind farmproject lifetime are
estimated. In a previous study conducted by the authors [28],
to identify the optimal configuration of the wind turbines in
the farm, binary particle swarm optimization (BPSO) is iden-
tified to be a suitable algorithm and hence the same approach
is used in this study also. Here, the algorithm is employed to
simultaneously determine the best configuration, sizing and
hub height of wind turbines, which, in turn, maximizes the
NPV subject for a fixed initial investment cost and fixedwind
farm area constraints (both technical and financial). Sensitiv-
ity analysis andMonteCarlo simulation are used to determine
the range and the normal distribution of NPV, respectively,
assessing the variability of the NPV with respect to the wind
resource.Hypothesis testing is also used to determine the fea-
sibility of the project, and scenario analysis is implemented to
determine the NPV in various scenarios including the worst.
Hence, this study could be used as a comprehensive guide by
an investor to design and assess the feasibility of a particular
wind power project.

2 Wind farmmodel

2.1 Wind farm energy evaluation

Wind farms constitute turbine units, arranged in a particular
fashion, aimed to increase the power generation. The energy
production from the farm can be derived as the cumulative
power production from each of the individual turbines in the
farm. When the upstream turbine extracts power from the
free-stream wind, it causes the turbulence and wind velocity
deficit in the downstream turbine due to the wake effect. The
array loss is accounted for by the wake loss lowering the total
wind farm energy production.

2.1.1 Wake effect model

The single linear wake effect model used to determine the
downstreamwind speedwas developedwith full-scale exper-
imental comparison in [29]. Because of the simplicity and
the popularity due to its availability in commercial software,
it is practical to embed this model in the population-based
wind farm layout optimization process. Also, the combined
techno-economic analysis being the point of focus, the choice
of an even complex wake effect model, is not given promi-
nence. Figure1 presents the wake effect schematic as the
boundary of linear expansion. Therefore, the wind speed of
downstream turbine j affected by a wake from the upstream
turbine i can be expressed as the wind speed deficit in (1),
where ui j is the wind speed in the wake, u0 is the free-stream

wind speed, ri is the upstream rotor radius and xi j is the dis-
tance between upstream and downstream turbine.

(
1 − ui j

u0

)
=

(
1 − √

1 − CT

) ( ri
(ri + 2α1xi j )

)2
. (1)

The entrainment constant is the rate of wake expansion
defined as α1 = 0.5ln( z0H ) where H is the hub height and
z0 is the surface roughness of a turbine location [30]. The
thrust coefficient (CT ) is the fraction of the thrust or the
axial force applied on a wind turbine rotor to the force of
wind directly faced on the rotor planewhich can be expressed
by the axial induction factor (a) through the Betz relations
as CT = 4a(1 − a) [1]. In addition, the different turbine
hub heights deal with the wind speed varied by the different
altitudes. The wind profile power law is used as a compara-
tively simple description with the reference height (Href ) as
in (2), where ūH is the wind speed at altitude H , ūre f is the
wind speed at reference altitude Href and α2 = ln( z0H ) is the
altitude entrainment coefficient [30].

ūH = ūre f
( H

Href

)α2
. (2)

The combination ofwake frommultiple turbines is defined
as the sum of individual loss of kinetic energy expressed as
the square of the wind speed. Therefore, the total wind speed
deficit at a downstream turbine (ū j ) from multiple wakes is
determined by the sum squares of the individual deficits as
in (3) [2], where N is the total number of wind turbines.

(
1 − ū j

u0

)2 =
N∑

i=1, i �= j

(
1 − ui j

u0

)2
. (3)

2.1.2 Wind turbine power curve

The wind turbine power curve is the characteristic relating
the electrical power generation from the turbine to the wind
speed at a specific hub height. In general, turbine blades start
rotating and delivery electrical power when the wind speed
is higher than the cut-in speed (ci ). With the increase in wind
speed, the turbine power output also increases with cubic
proportionality, until it reaches the rated speed (cr ). The rated
turbine power (TR) is constantly generated as the wind speed
increases from rated to cutout (co) value, where the blades are
safely locked to prevent turbine failure. The turbine power
curve model could be developed by a given cut-in, rated and
cutout speeds as in (4). In this paper, turbine sizing index
(T ) from 1 to 8 represents 225 to 3000 kW turbine rating
with different given hub heights (multiplier for standard hub
height, H = 1.0). Specifications of Vestas series (V29 -
V112) wind turbine rated power and one model of Shanghai
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Fig. 1 Schematic representation
of wake effect model

Electric Wind Power (W1250) are used here as shown in
Table 1.

Pi (ūi ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 : ūi < ci(
cr−ūi
cr−ci

)
TR : ci ≤ ūi < cr

TR : cr ≤ ūi ≤ co
0 : ūi > co

(4)

The extracted electrical power from the wind turbine
depends on the direction, intensity and probability of occur-
rence of the wind. Therefore, an average power generation
from the wind farm (PT ) is obtained from the summation of
power production from individual turbines and frequency of
wind distribution in the direction around a wind farm as in
(5), where fk is the probability distribution of the calculated
wind speed at direction k and N is the total number of tur-
bines in the wind farm. Accordingly, the wind farm annual
energy production (AEP) is determined as in (6):

PT =
360∑
k=0

N∑
i=1

fk Pi (ūi ) (5)

AEP = PT ∗ 8760. (6)

2.2 Wind farm cost model

US Department of Energy and National Renewable Energy
Laboratory (DOE and NREL) developed a reliable spread-
sheet-based wind turbine cost model using the series empir-
ical functions that relate the component mass and cost of the
major components and subsystems [31]. The initial invest-
ment cost for the wind energy development is determined
from the turbine sizing specification on the capital cost and
the station cost (or balance of station cost). The turbine capital
cost includes components like rotor, drive train and nacelle,
tower, control, safety and monitoring systems. The station
cost refers to the infrastructure implementation including
foundation, transportation, road and civil, assembly and

installation, electrical interface and connection, engineering
and permit.

In this paper, a wind farm cost model is developed by the
learning curve to describe the lower of investment cost relat-
ing to a series production of a larger number of wind turbines
installed within a wind farm. Purchasing a large number of
similar turbines and using the common contribution infras-
tructurewithin a specific areawill produce lower total project
investment cost. The requirement of initial cost for the wind
farm will be determined by the summation of the exponen-
tial learning curve following the technology factors (tF ) of
the capital cost of the first turbine (TCC) and the balance
of station cost (BOS) as in (7) [2], where ICN is the total
initial investment cost of turbines amount N units, tF1 and
tF2 are the technology factor for turbine manufacturer and
infrastructure implementation, respectively. The wind farm
project is the basis of comparisons with similar product of
the air craft industrial corresponding to the technology factor
as between 0.90 and 0.95.

ICN =
N∑
i=1

(
TCC ∗ i ln(tF1) + BOS ∗ i ln(tF2)

)
. (7)

3 Wind farm project development

In general, the initial capital cost is the most important bar-
rier affecting the competitiveness, hence the viability of the
wind energy power generation. In Thailand, as the case study,
a policy mechanism designed to accelerate investment in
renewable energy (RE) technologies offers a long-term con-
tract to every RE producers. In December 2014, National
Energy Policy Council (NEPC) approved a feed-in tariff
(FIT) at a fixed price of 6.06 Baht/kWh (19.5cent/kWh) for
a contract period of 20 years for wind energy generation [32]
with 20% corporate income tax. Therefore, to develop awind
farm project, not only the wind energy potential in a specific
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Table 1 Specifications of wind turbine series [31]

Size index (T ) Model Rated power
(TR) (kW)

Rotor diameter
dR , (m)

Standard hub
height H (m)

Cut-in speed
ci m/s

Rated speed
cr m/s

Cut-out speed
co m/s

1 V29 225 29 30 3 13 20

2 V47 660 47 50 3.5 14 25

3 V60 900 60 60 3.5 15 25

4 W1250 1,250 70 70 3.5 15 25

5 V82 1,650 82 80 3.5 15 25

6 V90 2,000 90 90 3.5 15 25

7 V100 2,600 100 100 3.5 15 25

8 V112 3,000 110 115 3.5 15 25

location is to be evaluated, but it is also important to consider
the cash flows while making a project investment decision.

3.1 Free cash flow

Free cash flow (CF) is the amount of money generated by
a project after accounting for all capital expenditures. CF
is used as the measure of a project’s financial performance
and allows a project developer to pursue opportunities that
enhance value of shareholders for the investor. It represents
the amount of money that a company is able to generate after
spending the money required to maintain or expand its asset
base.

3.1.1 Initial outlay

Initial outlay (CF0), given in (8), is the cost required to start
the project including the initial cash flow and net working
capital of investments such as project design and manage-
ment, administration, new equipment and installation.

CF0 = CFint + NWC0. (8)

CFint is the fixed capital investment and NWC0 is the
net working capital, at the initial stage. In this paper, CFint
including the capital cost of turbines and the base of station
is determined by using NREL’s component cost model as
shown in Table1 and is assumed that NWC0 is 5% ofCFint .

3.1.2 Annual after-tax operation cash flow (ATOCF)

AT OCF over a project’s lifetime is the additional cash flow
that a new project generates including energy sales as rev-
enues, cost of operation, depreciation and taxation as given
in (9). Revt is the revenues in the year t , NWCt is the net
working capital or the annual expense during the year t , and
Dpt is the depreciation in the year t .

AT OCFt = (
(Revt − NWCt ) ∗ (1 − Taxt )

)
.

+(Taxt ∗ Dpt ) (9)

Here, revenues are the energy sale to the utilities, which
is the product of AEP and feed-in-tariff (F IT ). NWCt is
obtained from the annual operation andmaintenance (O&M)
using NREL’s component cost model. Dp is estimated using
the modified accelerated cost recovery system (MACRS)
used in the USA [33] and the straight-line methods for 10
years.

3.1.3 Terminal-year after-tax non-operating cash flow
(TNOCF)

T NOCF is thefinal cashflow, includingboth the inflowsand
outflows, at the end of the project’s life including a potential
salvage value at the end of a machine’s life. T NOCF can be
calculated using (10), where T is the terminal year of project,
SalT is the salvage value at terminal year T , BVT is the book
value of equipment at terminal year T , and NWCT is the net
working capital at the terminal year T .

T NOCF = SalT − (
(SalT − BVT ) ∗ TaxT

) + NWCT .

(10)

In addition, the attractiveness of the project is evaluated
based on the cash flows generated over the project lifetime.
Using discounted cash flow analysis, the future cash flows
over the project life are discounted back to the present value
to determine net present value (NPV), internal rate of return
(IRR) and profitability index (PI).

3.2 Discount rate

Discount rate (d) is the required rate of return used to discount
a stream of future cash flows to their present value. It also
accounts for the risk or uncertainty of future cash flows; the
greater the uncertainty of future cash flows, the higher the
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discount rate. To determine the appropriate discount rate,
weighted average cost of capital (W ACC), (11), is used if
the project’s risk profile is similar to that of the company.
But if the project’s risk profile is substantially different from
that of the company, the capital asset pricingmodel (CAPM),
(12), is used.

W ACC : d = wd .rd ∗ (1 − Tax) + we.re (11)

CAPM : d = r f + β ∗ (rm − R f ). (12)

Here,wd is theweight of debt value to the firm’s financing,
we is the weight of equity value to the firm’s financing, rd is
the cost of debt, re is the cost of equity, r f is the risk-free rate,
β is the pricemovement index againstmarket and (rm−R f ) is
the equity market risk premium. The discount value is taken
to be ranging between 8 and 12% during the optimization
process and it will be accounting for an uncertainty with
normal distribution during Monte Carlo simulation.

3.3 Net present value

Net present value (NPV) is a measure of profitability used in
the capital budgeting to evaluate a project’s potential return
on investment. It is used to determine the present value of
investment by discounted sum of all received cash flows
which can be determined from the difference between the
present values of cash inflow and outflow as in (13), where
AT OCFt is the annual after-tax operation cash flow during
the period t , T NOCF is the terminal-year after-tax non-
operating cash flow, CF0 is the total initial outlay and d is
the discount rate.

N PV =
T−1∑
t=1

AT OCF

(1 + d)t
+ AT OCTT +T NOCF

(1+d)T
− CF0.

(13)

3.4 Internal rate of return (IRR)

IRR is the interest rate or the discount rate (d) that makes a
series of cash flows to a net present value of zero (NPV=0) as
in (14). IRR is used to compare with the minimum required
rate of return on the investment to assess the feasibility with
other projects.

0 =
T−1∑
t=1

AT OCFt
(1 + I RR)t

+ AT OCTT + T NOCF

(1 + I RR)T
− CF0.

(14)

3.5 Profitability index

Profitability index (PI) is the ratio between present value of
the project’s future cash flows and the initial investment used

Fig. 2 Annual wind rose

to identify the relationship between the costs and benefits of a
proposed project as shown in (15). The higher the value of PI,
the more the financial attractiveness of the project, where the
present value of the future cash flows is

∑(T−1)
(t=1)

(AT OCFt )
(1+d)t

+
(AT OCTT +T NOCF)

(1+d)T
and the initial investment cost is CF0.

P I = (Present value of the future cash flows)

(Initial investment cost)
(15)

3.6 Financial risk of wind farm project

Wind energy project is associated with a significant number
of uncertain entities starting from the wind speed to required
rate of return. Many financial analysis models attempt to
predict the possibility of the outcomes of the project, rela-
tive to the intervention of the random input variables. Firstly,
sensitivity analysis is used to determine the dependency of
different variables and their impact, under a given set of
assumptions. Here, the sensitivity of a specific number of
input variables, including average wind speed, required rate
of return, tax rate and expected salvage value, on the NPV of
the project is investigated. Scenario analysis is used to esti-
mate the expected dependent value responding to the specific
changes in the key factor values of the unfavorable event, or to
examine a theoretical worst-case scenario. Three scenarios,
including pessimistic, most likely and optimistic, are used
to determine the attraction of the wind farm project invest-
ment. Finally, Monte Carlo simulation is used to provide the
estimation of the wind farm project NPV as an outcome by
repeating the calculation with the random of AEP and dis-
count rates according to the normal probability distribution.
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Fig. 3 Wind probability distribution map

4 Wind distributionmap

Wind speed available at a particular height is the most impor-
tant information required for awind energy site. To determine
potential of the site, wind data are transformed into aWeibull
probability distribution function (WPDF) with scale (c) and
shape (k) parameters [34]. Combining the WPDF with a tur-
bine power curve, the annual wind energy production can be
obtained. However, only the frequency of wind speed data
is not sufficient for the potential evaluation of a wind farm
site since the variation in the direction of wind will change
the Weibull distribution characteristics leading to a variation
in the energy production potential of the site [19]. Usually,
the wind energy developer will consider a wind rose as the
graphical tool describing the frequency of thewind speed and
direction of flow, over a period of time at a specific location
as shown in Fig. 2. (Graphical representation ofwind speed at
40meters is influenced by tropical northeast monsoon during
November to April and southwest monsoon during May to
October.) The frequency of free wind speed at any direction
is divided into different color-level strips which represent the
frequency of wind speed blowing from a particular direction.
The longest strip shows the greatest frequency of wind speed
over a specified time frame from that particular direction
specified by the four cardinal directions corresponding to the
degrees of a compass given as 0o or 360o for North (N), 90o

for East (E), 180o South (S) and 270o for West (W).
Hourly wind speed and direction at 40 meters height is

collected over a period of one year atHuasaiDistrictwind sta-
tion, Nakhon Si Thammarat Province in Southern Thailand
(latitude 8o 4.376’ N longitude, 100o 27.513’ E) [35]. The
wind distribution map was developed as in [2] by integrat-
ing wind speed and direction into a wind frequency contour
map as shown in Table2. Wind frequency depends on the
independent variables, the speed and direction of wind, as
illustrated in Fig. 3. These wind data collected from Huasai

District have an average wind speed of 4.42 m/s at 40 meters
height. The wind comes from two main directions due to the
monsoon influence which blows from east during November
to April and from southwest during May to October. If the
wind data for a longer period are available, rollingmulti-year
average can be used to generate an annual wind distribution
map. In general, a longer time-series data will be able to pro-
vide more reliability in a wind farm design. However, since
the purpose is to develop the simultaneous financial and tech-
nical feasibility analysis of an optimal wind farm project, the
data currently considered are only for a period of one year.
Also, apart from the need for an averaging procedure, avail-
ability of a longer wind data shall not affect the methodology
and the formulation is open-ended to accept the bigger data
too.

Three average wind speed distributionmaps are generated
for 5m/s, 5.5m/s and 6m/s, at 40meters heightwith the same
direction distribution as the Huasai site data. These higher
average wind speeds with the same pattern are used as wind
data input to determine the business opportunity comparison
of wind farm with the different wind site potential.

5 Optimal placement of wind turbines

5.1 Problem formulation

To evaluate the NPV of the project, a wind farm business
analysis model is illustrated in Fig. 4. With the required rate
of return, NPV is obtained from the discounted project free
cash flow as in (13), while IRR is obtained from discount
rate with zero NPV and PI from (15). FCF is formed by
FC0, AT OCF and T NOCF shown in (8)–(10), respec-
tively. FC0 is the initial investment cost of wind farm project
to which a 5% add-up is made as the initial net working cap-
ital. AT OCF is determined from the net profit and yearly
depreciation, while T NOCF is the terminal year of project
including salvage and book value of project. In addition, a
5% add-up is also added to T NOCF as the terminated net
working capital. Project revenue is derived from the product
ofAEPandFIT,while yearly networking capital is the annual
cash expense including the operation and maintenance cost
(O&M) and the land lease cost (LLC), which is estimated
to be 0.7% and 0.108% of AEP, respectively. The levelized
replacement cost (LRC) is estimated to be 10.7 times of wind
farm capacity as in [32].

Depreciation is accounted for 10 years of expense, and
AEP is determined from the annual average power (PT) of
wind farm as in (6). The different power generation in each
turbine depends on its sizing as in Table 1 and its power curve
as in (4) which is a function of turbine sizing (Ti j ∈ 1,2,…8)
and wind speed which is proportional to hub height multi-
plier (Hi j ∈ 0.8,0.9,…1.5). The wake effect model in (1)
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Fig. 4 Net present value evaluation of wind farm project

Table 2 Specifications of wind turbine series [31]

u0 (m/s) Probability distribution of wind (% fk )

0–30 31–60 61–90 91–120 121–150 151–180 181–210 211–240 241–270 271–300 301–330 331–360

0 0.0126 0.0251 0.1006 0.0251 0.0251 0.1006 0.1635 0.1257 0.1257 0.1132 0.1132 0.0754

1 0.2138 0.2389 0.4401 0.2641 0.3269 0.7419 1.4083 1.0562 0.8424 0.5155 0.4275 0.2515

2 0.3395 0.6161 0.9808 0.9053 0.5030 1.0688 4.0111 3.5584 1.7352 0.8047 0.6035 0.2389

3 0.4778 1.4460 1.7855 1.5340 0.4024 0.8047 6.0606 3.9608 1.9992 0.9053 0.3772 0.3395

4 0.3395 1.8609 3.1560 1.8609 0.3898 0.2641 1.7855 1.7981 1.3328 0.8550 0.1132 0.1635

5 0.2263 1.4711 4.4386 1.8609 0.1257 0.0377 0.3395 0.9430 1.1568 0.4401 0.0377 0.0880

6 0.1383 0.9682 4.6398 1.7729 0.0754 0.0251 0.0629 0.7419 1.0059 0.1886 0.0251 0.0503

7 0.0629 0.4904 4.4386 1.3957 0 0.0126 0.0377 0.4401 0.6790 0.1006 0 0

8 0.0377 0.0629 3.6716 1.0939 0 0 0.0377 0.2012 0.3143 0.0503 0 0

9 0.0126 0.0629 2.3890 0.6790 0 0 0.0126 0.1006 0.1383 0.0126 0 0

10 0.0126 0.0126 2.0118 0.3018 0 0 0 0 0.0503 0 0 0

11 0.0126 0.0126 1.4460 0.2892 0 0 0 0 0 0 0 0

12 0 0.0126 0.7922 0.2138 0 0 0 0 0 0 0 0

13 0 0.0126 0.2389 0.0880 0 0 0 0 0 0 0 0

14 0 0.0126 0.0629 0.0126 0 0 0 0 0 0 0 0
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is a function of distance between upstream and downstream
turbine depending on wind farm placement (Si j ∈ 0,1).

The linear wake model is used to determine the wind
farm array losses because the result can be validated by
most of the commercial software [32]. Mostly, wind farm
layout optimization research prefers the linear model due to
its simplicity and cost-effectiveness for the population-based
algorithm. Moreover, the experiment shows the reasonable
linear wake model compared to the other nonlinear wake
models with the observed downstream wind speed at the
actual wind farm site [18]. For this reason, the linear wake
model as in (1) is used with the assumptions including (i)
the frequency of wind speed and direction following the
wind distribution map hit the first array of wind turbines
as shown in Table 2, (ii) the wake effect linearly expands
within a wind farm array without any disturbance from other
circumstances, (iii) the turbines extract power with the con-
stant coefficient of thrust (CT = 0.88) and (iv) the surface
roughness length within a wind farm area is a constant value
(z0 = 0.3) as a plain topology of coastal environment.

Usually, a larger turbine size and higher hub height, which
require a larger initial investment cost, can generate more
power than a smaller turbine at a lower hub height. In this
study, the initial investment cost increases from 20M$ to 200
M$, which is used as the cost constraint on investment, and
NPV was determined from a number of wind turbines with a
specific sizing and hub height within a wind farm. Therefore,
the problem formulation is given as follows:

Maximize f i tness f unction(S, T , H)

=
T−1∑
t=1

AT OCFt
(1 + d)t

+ AT OCTT + T NOCF

(1 + d)T
− CF0,

(16)

subject to

1. Number of wind turbines

0 < NT =
r∑

i=1

c∑
j=1

Si j ≤ r ∗ c (17)

2. Investment cost constraint

FCint (S, T , H) ≤ Cost Constraint, $ (18)

where the cost constraint varies from 20 M$ to 200 M$
3. Revenue

Revt = AEP ∗ F IT $/year (19)

4. Annual energy production

AEP(S, T , H) =
360∑
k=0

r∑
i=1

c∑
j=1

fk .Si j .P(Ti j , Hi j )

∗8760 kWh/year (20)

5. Net working capital

NWCt = O&M + LLC + LRCN

+Fee $/year, (21)

where

Operation and maintenance cost,

O&M = 0.007 ∗ AEP(Si j , Ti j , Hi j ) $/year (22)

Land lease cost,

LLC = 0.00108 ∗ AEP(Si j , Ti j , Hi j ) $/year (23)

Levelized replacement cost,

LRCN = 10.7
r∗c∑

i=1, j=1

PR(Ti j ) $/year (24)

where r, c = number of cell rows (r=10) and columns
(c=10).
Dpt = Depreciation account for the straight line method
of 10% CFint for 10 years and another for MARSC
method.
SalT = Salvage value at the end of project with 10% to
30% add-up.
NWC0, NWCT—Net working capital for initial and ter-
minal years (5% of FCint ).

5.2 BPSO-TVAC for optimal wind farm placement

In this paper, the binary particle swarm optimization with
time-varying acceleration coefficients (BPSO-TVAC) is used
to optimally and simultaneously place the turbine posi-
tions, sizing and hub height in order to maximizing NPV
of wind farm. BPSO-TVAC efficiently determines the opti-
mal location for turbine placement in a wind farm layout
optimization problem discussed in [8,28], while compared
with other prominent algorithms.This informationwas ascer-
tained when the particular formulation in this paper was
tested with various optimization methods like genetic and
evolutive algorithms, different versions of BPSO including
features like time-varying, and random inertia weights and
acceleration coefficients. In BPSO-TVAC, one particle rep-
resenting a wind farm configuration is initialized randomly
within a given particle population. If the number of parti-
cles is not well diversified, premature convergence can occur
before reaching the near global optimum. A fixed wind farm
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Fig. 5 Divided wind farm matrix representation in BPSO (particle)

area in the formof 10*10=100 cells in amatrix is considered.
Three parameters in the configuration matrix will be opti-
mally searched including 2-cell placement (0 or 1), 8 turbines
sizing index (Ti j = {1,2,…,8}) and 8 turbine hub heights
multiplier (Hi j = {0.8,0.9,…,1.5}). For 10*10 cells, the pos-
sible number of wind farm configurations is 8*8*2100. To
diversify the search, 50 population representing 50 possible
wind farm configurations is optimized for their optimal con-
trol parameter within a reasonable computational effort. The
procedure of BPSO-TVAC for optimal wind farm placement
is described in [8].

A wind farm area of 2000*2000 m2 is divided into 10*10
square cell matrix, leaving a single cell with 200*200 m2

area or 200 meters spacing between adjacent turbines posi-
tion. Initially, a wind farm as a particle is configured by three
optimized parameters. The cell position thus randomly gen-
erated can have configurations as either exist (1) or not exist
(0) in a wind farm position matrix, x Si , as shown in Fig. 5a.
Subsequently, the sizing matrix of each wind turbine in a
wind farm, xTi , is obtained as the element-wise product of
matrices in Fig. 5a, b as in (25). The hub height multiplier
matrix, xTi , is obtained by the element-wise product of matri-
ces in Fig. 5a, c, as in (25).

x Si =
⎡
⎣S1,1 S1, j . . . S1,c

....

Sr ,1 Sr , j . . . Sr ,c

⎤
⎦ | ı = 1 : r , j = 1 : c

xTi = [Si, j .Ti, j ]
xHi = [Si, j .Hi, j ]

(25)

The overall procedure to evaluate the wind farm opti-
mization is shown in Fig. 6. Firstly, the wind farm area
characteristic definition includes area size, turbine spacing,
roughness, restricted zone and area level. When a wind dis-
tributionmap at specific average wind speed is generated, the
wind farm configuration parameters including wind turbine
placement, sizing and hub height will be optimized. By using
BPSO-TVAC, the initial input parameters including parti-
cle positions and velocities are randomly generated. Here,
50 particles and 500 maximum iterations are used in this
paper. The cost constraint is varied from 20 Mto200M and
is defined in each initial iteration. During the optimization
process, if the investment cost of the updated configuration
particles from a previous iteration exceeds its initial cost con-
straint, the sizing will be randomly reduced until the given
cost constraint is satisfied. If not possible, the number of
turbines is randomly removed until the cost constraint is sat-
isfied. The personal best positions (pbest) and the global best
position (gbest) as the fitness function need to be evaluated.
Consequently, an updated position for each particle is deter-
mined by the probability threshold of the sigmoid function
which is a function of updated velocity.

6 Results and discussion

6.1 Wind farm optimal placement at themaximum
NPV

BPSO-TVAC is used to simultaneously optimize wind tur-
bines placement, sizing and hub height maximizing NPV
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Fig. 6 Overall procedure of wind farm layout optimization
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Fig. 7 Comparison of wind
farm NPV, IRR, and PI with
investment costs, for various
average wind speed values and
depreciation methods

Table 3 Comparison of the
maximum NPV between the
different average wind speed of
the optimal placement and
depreciation methods with the
same 10% discount rate

Average wind speed 5 m/s 5.5 m/s 6 m/s

Depreciation method MACRS Straight line MACRS Straight line MACRS Straight line

NPV (M$) 42.30 42.77* 82.06* 77.39 122.95* 121.03

IRR 5.8% 4.5% 7.5% 6.1% 10.1% 9%

PI 1.44 1.35 1.59 1.49 1.81 1.76

Initial Cost (M$) 95.22 122.02 139.07 158.20 152.52 159.47

Revenue (M$/year) 20.33 24.41 32.80 35.04 40.98 41.97

AEP (GWh/year) 104.28 125.17 168.21 179.70 210.17 215.27

COE (cent/kWh) 12.14 12.84 11.06 11.70 9.79 10.00

Wake loss 15.4% 18.1% 23.7% 26.5% 24.7% 27.9%
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Fig. 8 Comparison of wind
farm AEP between the average
wind speed with the same
distribution in the different
initial investment cost and
depreciation methods

Fig. 9 Wind farm wake loss
following the initial investment
cost

using the wind distribution map at 5, 5.5 and 6 m/s average
wind speed at 40 meters’ height with the same 10% discount
rate. With the same average wind speed, the NPV increases
with the initial investment cost, but the IRR linearly declines.
With the same investment cost, a higher average wind speed
provides a larger maximumNPV and IRR than the equal ini-
tial investment costs as shown in Fig. 7a, b. At wind speed of
6.0 m/s, the higher investment is the increase in NPV until
it reaches the maximum NPV of 122.95 M$ at the optimal
152.52M$ of investment cost. If the investment cost is higher
than 152.52 M$, the NPV will decline because of the higher
wake loss. The profitability index or benefit of cost ratio lin-
early declines as the investment cost is higher as shown in
Fig. 7c. For the average wind speed at 6 m/s, 5.5 m/s and 5
m/s, they obtain the maximumNPV of 122.95M$, 82.06M$
and 42.77 M$ with the initial investment cost at M$152.52,
139.07 M$ and 122.02 M$, respectively. It corresponds to
10.1%, 7.5% and 4.5% of IRR as shown in Table3. More-
over, the optimal placements show little difference between
the 10years of depreciationonbothMACRSand straight-line
method. When using the optimal configuration at a partic-
ular wind speed on other average wind speeds, their NPV
will be lower than those of other optimal configurations. For
instance, using the fixed 5.5 m/s optimal layout on the 5
m/s wind speed, the calculated NPV of 40.93 M$ would be
50% lower than the maximum 5.5 m/s NPV of 82.06 M$
and 4.5% lower than 5.0 m/s maximum NPV of 42.77 M$.
Meanwhile, using the fixed 5.5 m/s optimal layout on the 6
m/s wind speed, the calculated NPV of 120.60 M$ would be

47% higher than the maximum 5.5 m/s NPV of 82.06 M$
and 2% lower than 6.0 m/s maximum NPV of 122.95 M$ as
shown in Fig. 7a.

A higher investment cost provides a larger AEP as shown
in Fig. 8. However, the maximum NPV will not correspond
to the largest AEP because the slope of AEP declines as an
investment cost is higher. In Fig. 9, it can be noticed that the
wake loss in the optimal wind farm layouts linearly increases
with a higher investment cost. For different average wind
speeds, the linear wake loss increases with the investment
cost showing the array loss of wind farm for a specific wind
direction. At the maximum NPV for different wind speeds,
a higher average wind speed provides the larger wake loss
because more turbines are located within the wind farm.

Within a given square 2000*2000m2 wind farm area, the
configuration of wind turbine placements at their maximum
NPV and the convergence of calculations with the average
wind speed at 5 m/s, 5.5 m/s and 6 m/s are shown in Figs. 10,
11 and 12, respectively. BPSO-TVAC locates most of the
largest sizing wind turbines at the edge of wind farm area
directly facing the most frequent wind direction from north-
east and southwest monsoon following the wind distribution
map in Fig. 3. The algorithm also suggests increasing the
hub height to capture higher wind speed compared to stan-
dard altitudes. Also, the turbines inside the area are sparsely
installed to reduce the wake loss effect. Although the wake
loss arises on using a larger number of turbines, within a
higher average wind speed area, larger investment cost can
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Fig. 10 Wind farm configuration for 5 m/s wind speed and convergence characteristics

Fig. 11 Wind farm configuration for 5.5 m/s wind speed and convergence characteristics

Fig. 12 Wind farm configuration for 6 m/s wind speed and convergence characteristics
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Table 4 Sensitivity level and
range of estimation at 5.5 m/s
average wind speed

Dependent variable

AEP (GWh/year) 168.21 Project life 20 years

Annual expense (M$/year) 3.05 FIT ($/kWh) 0.195

Initial investment cost (M$) 132.45 Depreciation Straight line

Investment working capital (M$) 6.62

NPV of baseline (M$) 80.75

Independent variable Low Base High

Salvage value (M$) 10.60 11.66 12.72

Tax rate 10% 20% 30%

Discount rate 12% 10% 8%

Average wind speed (m/s) 5.0 5.5 6.0

Sensitive variables

NPV to salvage value (M$) 80.43 80.75 81.06

NPV to tax rate (M$) 91.90 80.75 62.55

NPV to discount rate (M$) 114.28 80.75 53.95

NPV to wind speed (M$) 41.40 80.75 121.51

Fig. 13 Range of estimation for
independent variable during
sensitivity analysis

receive a higher NPV and IRR than those with lower average
wind speed.

6.2 Sensitivity analysis

Sensitivity analysis is used to determine the variation in an
dependent variable with a particular independent one, under
a given set of assumptions. Here, the specific input variables
including average wind speed, required rate of return, tax
rate and expected salvage value are varied one at a time
to assess the extent of impact on the NPV. The base aver-
age wind speed, discount rate, tax rate and salvage value
are 5.5 m/s, 10%, 20% and 11.66 M$, respectively. The
low-to-high ranges of average wind speed, discount rate, tax
rate and salvage value are 5.0–6.0 m/s, 12%–8%, 30%–10%
and 10.60–12.57 M$, respectively, as shown in Table4. The
project assumes a fixed FIT of 0.195 $/kWh, 20 years life-
time and the 10% straight-line depreciation method for 10
years.

The range of estimation shows the sensitivity level of an
independent variable to the project NPV. As shown in Fig.
13, the site average wind speed from 5 to 6 m/s is the most
sensitive variable leading to the NPV ranging from 41.40 to
121.51M$, respectively. The discount rate varying from12%
to8% is the secondmost sensitive variable leading to theNPV
range from 53.95 to 114.28 M$, while the tax rate ranging
from 30% to 10% leads to theNPV range from 62.55 to 91.90
M$. The expected salvage value has little impact to project
NPV because of the highest 20 years discounted value.

6.3 Monte Carlo simulation analysis

The random variables influencing the analysis of the said
project considered here are the wind speed and the required
rate of return or the discount rate.MonteCarlo simulation can
provide the estimation of the normally distributedNPVof the
wind farmproject, by using the normally distributedAEP and
discount rates. Here, the probability of AEP depends on the
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Fig. 14 Monte Carlo simulation
histogram result

Fig. 15 Monte Carlo simulation
result with normal distribution
of project NPV

average wind speed in the range, 5.0–6.0 m/s, and the range
of discount rate is between 8% and 12%. Sampling of NPV
calculation from normal distribution of AEP and discount
rate is shown in Table5.

Figure14 shows the frequencies of different outcomes
generated by a 10,000 time of simulation generating the dis-
crete project NPV which should be a normal distribution if
the sampling size is large enough as in Fig. 15. The mean
NPV is 81.46 M$ at the middle of the curve implying a 50%
that the actual return will be higher or lower than the mean.
The 95% confidence level of NPV is more than 24.48 M$
as shown in Table6. The highest NPV and lowest NPV of
simulation are 281.74 M$ and -18.38 M$, respectively. The
base NPV from Table4 is 0.87% different from the Monte
Carlo simulation.

6.4 Hypothesis test

Hypothesis testing is the process to judge and evaluate
whether a hypothesis is likely to be true or false, within a
certain confidence level. Suppose the weight average cost of
capital (WACC) is 6%, the expected IRR should be higher
than 6% or NPV should be larger than 66.35 M$. The null
hypothesis is NPV ≤ 66.35, while the alternate being NPV
> 66.35. When the null hypothesis is rejected, the alterna-
tive one is accepted. To carry out hypothesis testing of NPV,
one-tailed test should be used.

Therefore, the null and alternative hypothesis are:
H0 : N PVh ≤ 66.35 (Null) and Ha : N PVh >

66.35 (Alternative)

Test statistic is calculated based on the number of NPV
sampling carried out in Monte Carlo simulation within 5%
significance level (α = 0.05) using (26), where μ is the mean
NPV of the project, σ is the standard deviation and nS is the
number of samplings from Monte Carlo simulation. The t
test results are indicated in Table7. Because t test statistics
is -43.62 much smaller than -1.646 (-5% significance level)
leading to rejecting H0 hypothesis, we could infer that the
NPV of this wind farm project is very likely to be higher than
66.35 M$, that also with a confidence level of 99.99%.

tstat = N PVh − μ

σ/
√
ns − 1

. (26)

6.5 Scenario analysis

Scenario analysis is used to estimate the expected depen-
dent value responding to the specific changes in the values
of key factors during unfavorable events or to examine a the-
oretical worst-case scenario. Here, three scenarios are used,
namely pessimistic, most likely and optimistic. As shown in
Table 8, pessimistic scenario uses 5 m/s average wind speed
with 30% tax rate, 12% discount rate and 11% salvage value.
Most likely scenario uses 5.5 m/s average wind speed with
20% tax rate, 10% discount rate and 12% additional salvage
value. Optimistic scenario uses 6 m/s average wind speed
with 10% tax rate, 8% discount rate and 13% salvage value.
The result indicates that the pessimistic scenario still pro-
vides the positive NPV and IRR of 15.86 M$ and 2.37%,
respectively.
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Table 5 Sampling of NPV calculation from the normal distribution in AEP and discount rate

Fixed value variable Normal distribution variable

FIT ($/kWh) = 0.195 Discount rate

Annual expense ($/kWh) = 0.018 AEP

Initial investment (M$) = 132.45

Tax = 20%

NWC0 and NWCT (M$) = 6.62

Salvage value (M$) = 15.89

Year AEP (GWh/year) Revenue (M$/year) Annual exp. (M$/year) Depreciation (M$) CF (M$) PV (M$)

1 137.09 26.73 2.48 11.92 21.78 19.64

2 141.29 27.55 2.56 11.92 22.37 18.19

3 208.34 40.62 3.78 11.92 31.86 23.36

4 164.74 32.12 2.99 11.92 25.69 16.99

5 183.61 35.80 3.33 11.92 28.36 16.91

6 163.56 31.89 2.96 11.92 25.53 13.72

7 168.11 32.78 3.05 11.92 26.17 12.68

8 144.49 28.17 2.62 11.92 22.83 9.98

9 149.45 29.14 2.71 11.92 23.53 9.27

10 178.75 34.85 3.24 11.92 27.67 9.83

11 111.31 21.70 2.02 0 15.75 5.05

12 235.31 45.88 4.26 0 33.29 9.62

13 120.94 23.58 2.19 0 17.11 4.46

14 170.77 33.30 3.10 0 24.16 5.68

15 198.27 38.66 3.59 0 28.05 5.94

16 124.86 24.35 2.26 0 17.67 3.37

17 169.18 32.99 3.07 0 23.94 4.12

18 128.43 25.04 2.33 0 18.17 2.82

19 230.29 44.90 4.17 0 32.58 4.56

20 195.68 38.15 3.55 0 47.02 5.94

Project evaluation sampling result NPV (M$) 63.06

IRR 5.80%

Table 6 NPV range of the
project using Monte Carlo
simulation

Number of sampling 10,000 Max NPV (M$) 281.74

Mean NPV (M$) 81.46 Min NPV (M$) −18.38

95% of confidence level (M$) 24.48 Standard deviation of NPV 34.64

Table 7 NPV range of the
project using Monte Carlo
simulation

Mean NPV($ μ) 81.46 Degree of freedom 99.99

Variance 1200.26 tcri tical −1.646

Number of samplings (ns ) 10,000 t test statistics (tstat) −43.62

Hypothesized N PVh 66.35 p value 0
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Table 8 Inferences from
scenario analysis

Variable Pessimistic Most likely Optimistic

Average wind speed (m/s) 5.0 5.5 6.0

AEP (at max. NPV, GWh/year) 104.28 168.21 210.17

Annual expense ($/kWh) 0.0192 0.0181 0.0167

Initial investment cost (M$) 90.69 132.45 145.26

Investment in working capital (M$) 4.53 6.62 7.26

Depreciation (10 years straight line, M$) 8.16 11.92 13.07

Salvage value (M$) 6.35 11.66 15.69

Tax rate 30% 20% 10%

Discount rate 12% 10% 8%

Result of scenario analysis

NPV (M$) 15.58 80.75 192.21

IRR 2.34% 7.23% 13.45%

7 Conclusion

In this paper, technical and financial analyses for a wind farm
project development, considering the linear wake loss using
the actual wind distribution map, are effectively carried out.
The optimal wind turbine placement in the farm is set tomax-
imize the net present value of wind farm subject to the given
initial investment cost and fixed wind farm area constraints.
Binary particle swarm optimization (BPSO) efficiently and
simultaneously optimizes wind farm configuration including
wind turbine placement, sizing and hub height. The obtained
optimal initial investment cost could lead to the highest NPV,
maximizing shareholders’ wealth. Sensitivity analysis indi-
cates that the site average wind speed and discount rate are
the top most sensitive factors to the NPV. The Monte Carlo
simulation dealing with the uncertainties of both normally
distributed average wind speed and discount rate provides
a normally distributed NPV. Hypothesis testing can ensure
with 99.99% confidence level that the NPV would be more
than 66.35 M$. Finally, the scenario analysis provided posi-
tive NPV obtained for the worst-case scenario, which can be
useful for wind farm developers to make investment decision
for a particular wind farm project.
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