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Abstract

Introduction Pedicle screw manufacturer identification is crucial for revision surgery planning; however, this information
is occasionally unavailable. We developed a deep learning-based algorithm to identify the pedicle screw manufacturer from
plain radiographs.

Methods We collected anteroposterior (AP) and lateral radiographs from 276 patients who had thoracolumbar spine surgery
with pedicle screws from three international manufacturers. The samples were randomly assigned to training sets (178), vali-
dation sets (40), and test sets (58). The algorithm incorporated a convolutional neural network (CNN) model to classify the
radiograph as AP and lateral, followed by YOLO object detection to locate the pedicle screw. Another CNN classifier model
then identified the manufacturer of each pedicle screw in AP and lateral views. The voting scheme determined the final clas-
sification. For comparison, two spine surgeons independently evaluated the same test set, and the accuracy was compared.
Results The mean age of the patients was 59.5 years, with 1,887 pedicle screws included. The algorithm achieved a perfect
accuracy of 100% for the AP radiograph, 98.9% for the lateral radiograph, and 100% when both views were considered. By
comparison, the spine surgeons achieved 97.1% accuracy. Statistical analysis revealed near-perfect agreement between the
algorithm and the surgeons.

Conclusion We have successfully developed an algorithm for pedicle screw manufacturer identification, which demon-
strated excellent accuracy and was comparable to experienced spine surgeons.

Keywords Machine learning - Pedicle screw - Computer-Assisted radiographic image interpretation - Deep learning

Introduction

Spinal fusion is the standard treatment for various spinal dis-
eases, including degeneration, trauma, deformity, tumors,
and infection. The number of spinal instrumented fusions
has been rapidly increasing in the past decades, with the
most common instrument utilized being the pedicle screw
fixation system [1, 2]. The pedicle screw plate system was
used by Roy-Camille in 1963 and was later popularised in
the 1990 [3]. Instrumented spinal fusion usually results in
good to excellent outcomes. However, revision rates remain
high at 13-32%, caused by complications such as pseud-
arthrosis, adjacent segment disease, postoperative junc-
tional kyphosis, and infection [4-7]. More concerning is
the increasing trend in revision rates over time [8, 9]. Lang
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with variations of screws, rods, and nuts designs. There are
dozens of international pedicle screw manufacturers and
many local manufacturers, with each manufacturer devel-
oping its system for pedicle screw insertion and removal.
The different removal equipment designs indicate the need
to identify the pedicle screw manufacturer and specific
pedicle screw model before the revision surgery. Failure to
correctly identify the model of pedicle screws may result
in difficulty or being incapable of removing the existing
instruments. Usually, the models of pedicle screws used are
recorded in the operative note. Still, it is not uncommon that
this information may be unavailable at the time of revision,
especially with the obsolete instrument or when the index
operation was done at another hospital or in another coun-
try. Surgeons are usually accustomed to pedicle screws from
a few manufacturers and may be unfamiliar with others, so
pre-operative visual identification from plain radiographs is
challenging.

Artificial intelligence (Al) is being developed world-
wide to assist humans in performing multiple tasks [10, 11].
Computer vision is one of the Al branches that has rapidly
evolved in recent years. With the advances of deep learning
and neural networks, many models were developed for the
segmentation, classification, and interpretation of medical
images [12]. There are currently only a few studies [13—17]
using these technologies to identify the pedicle screw manu-
facturer. Although the results were quite satisfactory, sev-
eral parts of the algorithms need improvement.

We developed an algorithm for fully automated pedicle
screw manufacturer identification in the plain thoracolum-
bar radiograph using multiple deep learning methods to help
spine surgeons identify and prepare the correct equipment
for the upcoming revision surgery.

Materials and methods
Overview of the study design

This retrospective single-center study was designed fol-
lowing the Checklist for Artificial Intelligence in Medical
Imaging (CLAIM) guideline [18]. The study protocol was
conducted in agreement with the Declaration of Helsinki
and approved by our institutional review board (IRB No.
P3-0075-2565).

The study was designed to evaluate the proposed algo-
rithm for pedicle screw manufacturer classification. The
radiographs were randomly divided into a training set
(65%), a validation set (15%), and a test set (20%). After the
training, the trained algorithm classifies the screw manufac-
turer in each radiograph in the test set. Two spine surgeons
with 5 and 20 years of experience with these pedicle screws
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independently classify the pedicle screw manufacturer of
each patient using AP and lateral radiographs. The surgeons
were given six example images from the training set, con-
sisting of AP and lateral radiographs of each manufacturer.
The interrater correlation between the algorithm and spine
surgeons was calculated.

Proposed algorithm

The proposed algorithm integrates multiple deep learning
techniques to fully automate the identification of pedicle
screw manufacturers from plain radiographs. It consists of
several steps, each designed to improve the accuracy and
reliability of the classification process. The system takes as
input a pair of radiographs, one from the AP view and one
from the lateral view of a patient, and follows a multi-step
approach to predict the manufacturer of the pedicle screws
used in the surgery. Figure 1 summarizes the proposed algo-
rithm from the inputs to the output.

Input radiographs

The algorithm begins by accepting a pair of X-ray images,
one from the AP view and one from the lateral view. These
two views provide different perspectives of the pedicle
screws, which allow the system to capture different struc-
tural details important for manufacturer identification.

View classification

Before analyzing the screws, the algorithm uses the view
classifier model mentioned in the previous section to ensure
that the input radiographs are correctly identified as either
AP or lateral views. This step is essential because the subse-
quent models are view-specific.

Screw detection

After the views are classified, the screw detector model is
applied to both the AP and lateral radiographs to detect and
extract the pedicle screws in the images. This step isolates
the pedicle screws from the surrounding anatomy, ensuring
that only the relevant parts of the image are used in the next
stages.

Manufacturer classification

Once the screws are detected and localized, the system
extracts each screw from the image. The screw classifier
model is then employed to classify the manufacturer of
each pedicle screw based on the extracted images. Separate
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Fig. 1 The overview of the proposed algorithm

classifiers are trained for AP and lateral views to optimize
accuracy for each perspective.

Voting system for final prediction

After classifying each screw in both the AP and lateral
images, the final manufacturer prediction for a patient is
determined by a voting mechanism. This process aggregates
the predictions from all screws in both views using a tech-
nique similar to a hard voting ensemble method, also known
as majority voting. This process involves counting the pre-
dictions made by each classifier and selecting the class that
receives the most votes as the final prediction. That is, the
manufacturer with the most votes from the individual screw
predictions across both radiographs is selected as the final
output. This step increases the overall accuracy by combin-
ing the information from multiple viewpoints and screws.
Fig. S1 illustrates the algorithm as a flowchart.

Dataset and preprocessing

Digital Imaging and Communications in Medicine
(DICOM) files of plain radiographs of 300 patients who
underwent thoracolumbar pedicle screw insertion from
January 2017 to December 2020 were collected from the
picture archiving and communication system (PACS). All

DICOM images were checked and anonymized by manu-
ally removing all metadata from the file using Bee DICOM
Viewer (SinoUnion Healthcare Inc., Beijing). The images
were then converted to JPG format. The inclusion criteria
are: (1) Age more than 20 years old (2) Underwent thora-
columbar pedicle screws insertion using one of the three
pedicle screw system that were most commonly used in
our hospital (CD Horizon Legacy, Medtronic, Minnesota;
SpheRx, NuVasive, California; Xia II, Stryker, Michigan).
(3) Has a record of the manufacturer of pedicle screws in
the operative note. Exclusion criteria (1) Low-quality image
(2) Iliac screw or S2 alar-iliac screw. (3) Broken screws (4)
Unable to incorporate every pedicle screw in a single radio-
graph, e.g., patients with long-level thoracolumbar fusion.
6) Patient with pedicle screws from multiple manufacturers.

Ground truth

The ground truth and data labeling were derived from actual
surgical records, ensuring accurate identification of the
pedicle screw manufacturers used in each case. The images
were labeled as AP or lateral, and pedicle screws from
which manufacturer were used. A spine surgeon with 10
years of experience did the label. This labeling was used for
both training and evaluating the machine learning models.
Additionally, this ground truth was used for benchmarking
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the algorithm’s performance, as it allowed direct compari-
son between the model’s predictions and the identifications
made by the spine surgeons.

Models training and postprocessing
Model training for the view classifier

To effectively classify the input radiographic images as
either AP or lateral views, we trained a classifier using the
VGG-16 architecture [19]. Since the pedicle screws appear
differently when viewed from AP and lateral views, it is
important to develop a classifier that could accurately dis-
tinguish between these views. By correctly identifying the
view, the algorithm can select the appropriate, view-specific
model for implant manufacturer identification, thereby
improving classification accuracy with a relatively small
dataset.

A total of 124 radiographic images were randomly
selected for training the view classifier, divided into 84
images for training, 20 for validation, and 20 for testing.
We employed data augmentation techniques to artificially
increase the diversity of the training data and improve model
generalization [20]. The augmentations included: randomly
horizontal flip (flip right-to-left), rotation by +15 degrees,
translation by +10% of the image size, scaling by +10%,
adjustments to brightness and contrast by +30%, and ran-
dom application of Gaussian blur and sharpening. We used a
real-to-augmented data ratio of 1:3, chosen based on experi-
mental comparisons of model performance across different
augmentation ratios, including 1:0, 1:3, 1:5, and 1:7. The
model was trained for 200 epochs, using a pre-trained VGG-
16 model as the base, with the augmented images enhancing
the training process.

Model training for the screw detector

We employed YOLOVS [21] to detect and crop the pedicle
screws from the images, ensuring that the CNN models in
the later stages would only process the relevant regions.
Using 124 images with a total of 820 labeled screws, the
YOLOVS model was trained.

Model training for the screw classifier

After obtaining the screw detection model, we developed a
program to automatically load all the radiographic images
in the training set, detect, and crop out the pedicle screw
sections. These cropped screw images were then organized
into separate folders based on the manufacturer. We trained
a classifier to identify the manufacturer using the VGG-16
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model based on these screw images. From a total of 695
screw images, we got 425 images from AP views and 270
images from lateral view. The VGG-16 model was used for
training, with the input image size set to 224 x 224 pixels.
To improve the model’s performance, we applied the same
data augmentation technique as the view classifier train-
ing with the addition of a random vertical flip. To enhance
model performance, we applied the same data augmentation
techniques used in view classifier training, with the addi-
tion of random vertical flipping. A real-to-augmented data
ratio of 1:5 was employed to further improve generalization.
We trained the model for 200 epochs using transfer learn-
ing from VGG-16 with Batch Normalization, trained on the
ImageNet dataset [19].

Statistical analysis

Parametric data were reported with mean=standard devia-
tion. Data were compared between the training set, valida-
tion set, and test set by ANOVA for continuous data and
the Pearson Chi-square test for categorical data. Precision,
recall, specificity, accuracy, and F1 score of the algorithm
and surgeons were calculated and reported using weighted
averages between classes. The agreement between clas-
sification by algorithm and surgeons was analyzed using
Cohen’s kappa. Statistical analyses were performed using
IBM SPSS version 29.0 (IBM Corp., Armonk, NY), with
statistically significant results at p<0.05.

Results

After exclusion, 276 anteroposterior (AP) and 276 lateral
radiographs were included in the dataset (Fig. 2). The mean
age was 59.5+9.3 years. Total number of pedicle screws
was 1,887 screws. The screws were inserted in the thoracic
vertebra with 119 screws, the lumbar vertebra with 1,581
screws, and the sacrum with 187 screws. The radiographs
were divided into a training set (n=178), validation set
(n=40), and test set (n=>58) without statistically significant
differences in demographic data, except the validation set
has a smaller percentage of thoracic screw compared to the
other sets (Table 1).

View classification can classify AP and lateral views with
100% accuracy. AP view screw detectors can detect 406
screws out of 405 screws (1 error of detection) (Fig. 3a).
Lateral view screw detectors model can detect only 230
out of 405 screws due to the parallel of the screws. (Fig-
ure 3b and c¢). However, when compared to the labeled data,
the screw detectors model achieved a mean Average Pre-
cision (mAP@0.5 IoU) of 95.7%. AP screw classification
model of each screw can classify the manufacturer with an
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accuracy of 96.6% and F1 score of 0.95 (Fig. 4a; Table 2)
Meanwhile, the lateral screw classification model has an
accuracy of 95.1% and F1 score of 0.93. After the manu-
facturer vote, the algorithm can identify the manufacturer
with 100% accuracy in the AP view and 98.9% in the lateral
view. The accuracy is 100% in mixed view (Fig. 4b) Spine
surgeons can classify the manufacturer of the pedicle screw
with an accuracy of 97.1% (Fig. 4c). Surgeons tended to
have more accuracy on pedicle screws that they were more
familiar with. The algorithm and the surgeons had a near-
perfect agreement with kappa=0.92 (95% CI=0.84 to 1.00,
p<0.001).

Failed cases analysis

Examples of incorrectly classified cases are presented in
Fig. 5 The reason for failed classification includes non-con-
vergence of the screws in AP view resulting in decreased
features for the algorithm to determine the manufacturer
(Fig. 5a and b). Another reason for failed classification in
the upper-thoracic level lateral radiograph is that the screw
detector model can detect only three screws out of ten. The
lateral classifier model also wrongly identifies two out of
three detectable screws. (Figure 5c and d)
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Table 1 Demographic data

Parameters Train- Valida- Test set p-value
ing set tion set (n=58)
(n=178) (n=40)

Female (%) 119 28 (70%) 40 (69%)  0.35
(67%)

Age (year), mean 59.5£9.1 59.6£9.1 59.3+10.1 0.38

(=SD)

Multilevel fusion (%) 145 35 (88%) 44 (76%) 0.1
(81%)

Number of pedicle 1202 280 405 0.06

SCrews

Thoracic level 73 10 36 0.02

Lumbar level 1007 239 335 0.65

Sacral level 122 31 34 0.46

Manufacturer 0.67

NuVasive 61 14 20

Medtronic 57 13 18

Stryker 60 13 20

SD: Standard deviation p-value demonstrates statistical difference
between the training set, validation set, and test set

Discussion

Computer vision is increasingly utilized to assist doctors
in interpreting medical images. Several machine learning

LATERAL

Fig. 3 Bounding boxes show classifier results identifying screw manu-
facturers. Legend: H (Blue color)=Stryker, I (Green color)=NuVa-
sive, M (Red color)=Medtronic. Numbers (0.00-1.00) indicate con-
fidence in the prediction. (a) Error of screw detector model in the
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models assist radiologists in interpreting radiographs, com-
puted tomography, and magnetic resonance imaging [22,
23]. Implant identification is also another important appli-
cation of computer vision [13]. Several studies have used
machine learning approaches to identify the pedicle screw
manufacturers. Yang et al. [14] developed a model using a
conventional transfer learning algorithm to identify pedicle
screws from five manufacturers in patients who underwent
single-level lumbar spinal fusion. After training with 2894
images, they achieved 98% sensitivity and specificity. How-
ever, the generalization may be limited due to the inclusion
of only single-level surgery. Anand et al. [15] developed
another deep learning model to classify pedicle screws from
five manufacturers using 396 patients who underwent pos-
terior thoracolumbar instrumentation, including those with
multi-level fusion. The authors used the KAZE algorithm
to extract features for model training and classification.
The performance of their algorithm is outstanding for the
classification of two or three manufacturers (91% and 82%,
respectively), but the performance drops to 66% for 5-class
identification. More recently, Yao et al. [16] used YOLOVS
to crop the radiograph and then trained the model with Effi-
cientNet [24] to identify the brand of pedicle screw from 7
manufacturers with an accuracy of 94%.

L

LATERAL

anteroposterior radiograph. The screw detector model identifies 11
screws instead of the actual ten screws. (b) The error of screw detec-
tor model in a lateral radiograph. (c) Correct detection of the pedicle
screw in a lateral radiograph
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Table 2 Accuracy of the algorithm for pedicle screw manufacturer prediction using AP, lateral, and both views compare to surgeons

Metrics Screw: AP Screw: Lateral Vote: AP Vote: Lateral Vote: Both Surgeons
Precision (%) 95.1 93.1 100.0 98.4 100.0 96.0
Recall (%) 94.9 93.0 100.0 98.3 100.0 95.7
Specificity (%) 97.5 96.1 100.0 99.1 100.0 97.8
Accuracy (%) 96.6 95.1 100.0 98.9 100.0 97.1

F1 Score 0.95 0.93 1.00 0.98 1.00 0.96

Screw: Screw classifier model for each screw, Vote: Result after the vote, AP: Anteroposterior

Initially, we attempted direct classification from the full
radiographic images, similar to the published studies [14,
15]. However, this approach resulted in an unsatisfactory
accuracy of 58% for AP views and 75% for lateral views.
The primary issues were the limited dataset size and the
VGG-16 model’s small input size limitation (224 x 224 pix-
els), which caused significant information loss during image
resizing. Additionally, random cropping often resulted in
non-implant regions being used for training, as the implants

constitute only a small portion of the image. To address this
challenge, we observed that key distinguishing features,
such as screw angles, pitch distance, and thread length,
are found on the pedicle screws. Therefore, we developed
a multi-step approach focusing on detecting and isolating
the screws before classification resulting in improved accu-
racy. The main difference between our approach and pre-
vious algorithm is that while other models are trained on
whole images with multiple pedicle screws and crosslinks.
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Fig. 5 Suboptimal screw convergence examples where only screw
heads are visible without body and thread portions, leading to potential
model misclassification due to missing anatomical features. (a and b).
An error in the algorithm for the lateral radiograph (c). Only 3 out of 10

In contrast, our classifier model trained specifically with
each pedicle screw.

Our methodology offers several benefits. First, we can
reduce the black-box problem of a deep neural network
because the algorithm focuses on and extracts the features
from each screw, resulting in an explainable process. Sec-
ond, we can increase the sample by converting 178 radio-
graphs into 1,200 individual pedicle screw images for model
training, improving model robustness. Third, the algorithm
is more user-friendly as there is no need to crop the image
to a specific area, unlike other algorithms. This feature also
accelerates the classification process when identifying a
high volume of cases. Fourth, by detecting and classifying
each pedicle screw, our model can be applied to patients
who underwent multiple surgeries with implants from differ-
ent manufacturers. However, in cases of patients with mul-
tiple implant systems, the voting mechanism might produce
incorrect result because it will select only one manufacturer
with the highest screw count, so it is crucial to consider the
prediction probability of each screw in such cases.

The difference in pedicle screw numbers between train-
ing, validation, and test sets approaches statistical signifi-
cance (p=0.06). While this heterogeneity between datasets
could potentially affect model performance, our results
show that the model maintained high accuracy in the test
sets. This suggests that our model successfully learned gen-
eralizable features rather than dataset-specific patterns, indi-
cating good robustness despite the data heterogeneity.

Previous studies typically reported that lateral image clas-
sifiers perform better than the AP image classifiers [13—16].
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screws in T2-T6 levels were detected, and 2 of them were incorrectly
classified. However, in the anteroposterior film of the same patient,
an algorithm for anteroposterior radiographs can correctly detect and
classify all ten screws (d)

However, in this study, we found the opposite result. Our AP
classifier outperformed the lateral classifier. This difference
can be explained by several technical factors. First, iden-
tifying the individual pedicle screws in lateral radiograph
is more challenging due to the parallel orientation of the
pedicle screws (Fig. 4b and ¢). Second, also due to the over-
lapping appearance of pedicle screws, we had fewer training
samples for the lateral screws resulting in reduced perfor-
mance of the lateral image classifiers.

Limitations and future study

The study was limited to cases from our institutions, and we
have only three most commonly used instruments. Using
computer vision for classification, we have to increase the
training dataset when another class is added. Otherwise,
the performance will decrease. To integrate this model into
clinical practice, we need to extend this study to cases from
other institutions, other manufacturers, and the inclusion of
spinal instruments other than pedicle screws. Another limita-
tion is that we included only thoracolumbar pedicle screws.
Since posterior cervical screws have a different shape and
size than thoracolumbar pedicle screws, we might need to
train the model separately for cervical screw classification.
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Conclusion

We developed a new algorithm for the identification of
pedicle screw manufacturer from three manufacturers with
an excellent accuracy and comparable to experienced spine
surgeons.

Supplementary Information The online  version  contains
supplementary material available at https://doi.org/10.1007/s00586-0
25-09167-3.
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